

CENTRE EUROPÉEN DE RECHERCHE ET DE FORMATION AVANCÉE EN CALCUL SCIENTIFIQUE

Simulation aux Grandes Echelles des écoulements réactifs et application en pétrochimie

<u>Groupe CFD:</u> L. Gicquel, O. Vermorel, G. Staffelbach, E. Riber, A. Dauptain, F. Duchaine

J3P – Nancy ENSIC – 25 nov. 2014

www.cerfacs.fr

B. Cuenot

Les écoulements réactifs

… sont présents dans de nombreux systèmes, naturels ou industriels

ECERFACS

Les écoulements réactifs

… sont présents dans de nombreux systèmes, naturels ou industriels

Turbulence et chimie

 Tous ces écoulements ont un commun un caractère turbulent qui contrôle le mélange et donc la chimie

Turbulence et chimie

 Tous ces écoulements ont un commun un caractère turbulent qui contrôle le mélange et donc la chimie

Simulation des écoulements turbulents

RANS / LES / DNS

Exemple : écoulement derrière une marche

Source: Rémy Fransen, 3rd INCA colloquium, ONERA, Toulouse (2011)

Source: Rémy Fransen, 3rd INCA colloquium, ONERA, Toulouse (2011)

RANS:

- champs moyens, stationnaires
- coût calcul très faible
- turbulence modélisée

LES:

- champs physiques filtrés, instationnaires
- coût calcul élevé
- turbulence sous-maille modélisée

DNS:

- champs physiques exacts, instationnaires
- coût calcul très élevé
- turbulence résolue

Simulation des écoulements turbulents

RANS / LES / DNS
 Exemple : écoulement derrière une marche

Source: Rémy Fransen, 3rd INCA collocuium, ONERA, Toulouse (2011)

RANS:

- champs moyens, stationnaires
- coût calcul très faible
- turbulence modélisée

LES:

- champs physiques filtrés, instationnaires
- coût calcul élevé
- turbulence sous-maille modélisée

DNS:

- champs physiques exacts, instationnaires
- coût calcul très élevé
- turbulence résolue

Outils et HPC

AVBP – An unstructured LES solver Jointly developed by IFP-EN and CERFACS

- External, internal flows
- Fully compressible turbulent reacting flows (ideal & real gas thermo.)
- DNS / LES approach
- Unstructured hexaedral, tetraedral, prisms & hybrid meshes
- Massively parallel, SPMD approach
- Explicit in time
- Centered schemes
 - Finite Volumes / Finite Elements (2nd/3rd order^a)
- SGS models : Smagorinsky(dynamic)/WALE^b
- NSCBC^c boundary cond. + wall laws
- Reduced^d or tabulated^e chemical kinetics
- Thickened flame turb. combustion model (TFLES)^f
- Multi-phase solvers (Lagrangian & Eulerian)

^aColin O. & Rudgyard M., Journal Comp. Physics, 2000 ^bNicoud F. & Ducros F., Flow, Turb. Combustion, 1999 ^cPoinsot T. & Lele S., Journal Comp. Physics, 1992 ^dFranzelli B. et al., Combust. Flame, 2010 ^eFiorina B. et al., Combust. Flame, 2010 ^fColin O. et al. Physics of Fluids, 2000

Applications Gas turbines

- Aeronautical engines
- Piston engines
- Statoreactor
- Rocket engines
- Furnaces
- Heat exchangers

Outils et HPC

ECERFACS

Un exemple: la combustion turbulente

<u>L'allumage</u> moteur est de première importance...!
 Moteurs aéronautiques:

- Conception (nombre d'injecteurs, volume zone primaire)
- Allumage sécurisé dans toutes les conditions (rallumage altitude)

Allumage

 Exemple moteur aéro. Brûleur multi-injecteurs CORIA^a

Allumage

Exemple moteur aéro. Calcul brûleur multi-injecteurs^a

^aBarre et al, Combust. Flame, 2014

Allumage

Exemple moteur aéro.
 Calcul annulaire complet^a

Explosions

Transition déflagration-détonation

• Speed-up correct jusqu'à 131 072 cores

^aMasri et al, Exp. Thermal & Fluid Sci., 2000

Explosions

Transition déflagration-détonation

Peut-on passer à l'échelle?

Explosions

Une application « procédés »: le vapocraquage de l'éthane

ECERFACS

Les tubes nervurés peuvent augmenter le transfert de chaleur de deux façons:

- augmentation de la surface interne des tubes
- augmentation du coefficient de transfert de chaleur grâce à une intensité turbulente plus grande.

MAIS

la perte de charge augmente

→ Utilisation de « wall-resolved Large Eddy Simulation » pour répondre à la question: « Quelle est l'efficacité d'un tube nervuré en termes de perte de charge, transfert de chaleur et conversion chimique de C2H6 en C2H4?»

ECERFACS

Conditions de fonctionnement

Composition à l'entrée (fraction massique)	74.1% C2H6 25.9% H2O
Reynolds	27 000
Pression	1 atm
Temperature parois	1200K
Temps de résidence	~0.5s

Chimie réduite (fournie par Laboratorium voor Chemische Technologie)

- 19 espèces:
- H2 CH4 C2H2 C2H4 C2H6 C3H6 C4H8 C4H6 C4H10 H CH3 C2H3 C2H5 C3H7 1C4H9
 2C4H9 C4-4 C3H5 H2O
- 32 réactions:
 - réaction principale: C2H6 + C2H3 => C2H5 + C2H4

Isosurface instantanée de critère Q, coloré par la vitesse axiale

- ➤ 2.22M cellules → temps CPU/itération: 0.06s sur 1024 coeurs(Turing)
- Temps de calcul: 105 CPUh pour un temps convectif
- Temps physique total : 540 temps convectifs (190ms temps physique)

Vitesse axiale moyenne et instantanée

• Vitesse axiale moyenne et instantanée

Vitesse azimuthale moyenne

Perte de charge

- Tous les termes sont normalisés par $ho u_b^2 D^2$
- Les résultats sont exprimés en pourcentage du terme source imposé dans le tube lisse

Perte de charge

- Tous les termes sont normalisés par $ho u_b^2 D^2$
- Les résultats sont exprimés en pourcentage du terme source imposé dans le tube lisse

	Pressure drag	Friction drag	Total drag	Total imposed force
R51 Y1	2.33e-2 (658%)	0.97e-3 (27%)	2.42e-2 (685%)	2.36e-2 (668%)
R51 Y10	2.56e-2 (725%)	1.33e-3 (37%)	2.70e-2 (762%)	2.34e-2 (662%)
S51 Y1	0 (0%)	3.54e-3 (100%)	3.54e-3 (100%)	3.534e-3 (100%)

Vitesse axiale fluctuante

♦ Température instantanée

Taux de réaction Time = 0.031sMean reaction rate Lisse 6 Reaction rate [mole/m³/s] 5 4 Reaction rate [mole/m3/s] 3 1.00 2.50 4.00 5.50 7.00 2 1 nervuré 0 0.02 0.04 0.06 0.08 0.1 0 time [s]

Effet des nervures

ZCERFACS

Conclusions

La simulation aux grandes échelles

- est un outil puissant et efficace pour le calcul des écoulements réactifs en configurations réelles;
- apporte une meilleure compréhension des écoulements réactifs et des réponses inédites à des questions encore ouvertes;
- nécessite une efficacité de calcul maximale sur machines massivement parallèles.

