

Influence de la stabilité et de la photoréactivité sur la toxicité des nanoparticules : Cas de ZnO

raphael.schneider@univ-lorraine.fr

Contexte et challenges: ZnO

ZnO massif

Utilisation des nanoparticules de ZnO

- **Industrie plastique** (remplissage, activants de matières plastiques,...)
- Industries pharmaceutique et cosmétique (absorbant des rayonnements UV dans les crèmes solaires, poudres, dentrifrices,...)
- Industrie textile (absorbant des rayonnements UV, bactéride,...)
- Electronique (photoélectronique, détecteurs, lasers, cellules solaires,...)
- Photocatalyse
- Autres : encres anti-falsification, biosenseurs, emballages,...

Contexte et challenges: ZnO

Morphologies

Contexte et challenges: ZnO

Quantum dots ZnO

Nanocristaux avec de nouvelles propriétés électroniques et optiques. 4

Contexte et challenges: les quantum dots ZnO

ZnO : matériau à bandgap direct (bandgap de 3,37 eV à température ambiante). Energie élevée de l'exciton (60 meV).

 $\sqrt{\text{Emission excitonique des quantum dots ZnO}}$

 $\sqrt{1}$ Emission due aux défauts de ZnO

Contexte et challenges: les quantum dots ZnO

Propriétés optiques

Materials Today **2007**, *10*, 40-48; *J. Am. Chem. Soc.* **2007**, *129*, 16029-16033. *Rep. Prog. Phys.* **2009**, *72*, 126501.

Contexte et challenges: les quantum dots ZnO

Propriétés optiques

J. Am. Chem. Soc. 2007, 129, 16029-16033.

Objectifs

Caractériser la toxicité liée à certaines nanoparticules en utilisant ZnO comme modèle

Dissolution \Leftrightarrow Réactivité \rightleftharpoons Agrégation

Programme

(1)Synthèse et fonctionnalisation de surfaces des QDs (2 tailles et différents ligands),

(2)Stabilité des QDs (biosenseurs et spectrométrie de masse),

(3)Toxicité des QDs (cinétique de croissance, biosenseurs, dommages associés aux EROs,...).

8

Synthèse et fonctionnalisation des QDs

Silanization permet la conservation des propriétés optiques après dispersion dans l'eau

J. Mater. Chem. 2010, 20, 1147-1155. Nanotechnology 2014, 25, 145606.

Tests de toxicité sur bactéries *E. coli* en culture

Nanotechnology **2012**, 23, 335101.

Des biosenseurs pour estimer la quantité d'ions métalliques biodisponibles

- dommages ADN ?
- dommages aux protéines ?
- dommages membranaires ?
- Stress associé aux nanoparticules
- Stabilité des nanoparticules
- Impact sur le matériel biologique

Extinction de la bioluminescence dans *Escherichia coli* MG1655(pUCD607) et *Cupriavidus metallidurans* CH34(pUCD607)

- QDs ZnO et ZnCl₂ sont plus toxiques vis-à-vis de *E. coli* que *C. metallidurans.*
- Pour *E. coli,* courbes de toxicité pour ZnCl₂ et ZnO QDs sont très proches.

=> QDs ZnO dissouts à faibles concentrations ?

- For *C. metallidurans,* QDs ZnO QDs sont moins toxiques que ZnCl₂.
- *E. coli* exposé à $ZnCl_2$ (\Box) et aux QDs ZnO (\blacksquare) *C. metallidurans* exposé à $ZnCl_2$ (\diamondsuit) et aux QDs ZnO QDs (\blacklozenge)

Ions Zn²⁺ libérés par les QDs ZnO@APTMS

Dissolution des QDs dépend de leur concentration

La spectrométrie de masse pour évaluer la stabilité des QDs

A forte concentration, la dissolution des nanoparticules est limitée dans le temps, même en milieu biologique.

Spectres de masse des QDs

Géneration d'EROs par les QDs ZnO

Photoproduction d'EROs et détection

Production de radicaux •OH

Influence de la taille des nanoparticules

Influence du ligand de périphérie sur la production des radicaux 'OH

Production de radicaux O₂•-

Production de H₂O₂

La production d'EROs baisse dans les milieux biologiques

Influence du milieu

cations

рΗ

Influence d'anions « spectateurs »

Génération de nouvelles espèces oxydantes en présence de nitrite ou de carbonates

$$Na^{\oplus} \stackrel{\bigcirc}{\ominus} O - N = O \xrightarrow{\bullet} OH \qquad Na^{\oplus} \stackrel{\ominus}{\ominus} O - O - N \stackrel{\oplus}{} O \\ peroxynitrate$$

$$Na^{\oplus} \stackrel{\bigcirc}{\ominus} O \stackrel{\bigoplus}{} O \stackrel{\bigoplus}{} Na^{\oplus} \xrightarrow{\bullet} OH \qquad Na^{\oplus} \stackrel{\ominus}{\ominus} O \stackrel{\bigoplus}{} O \stackrel{} O \stackrel$$

22

Stress induit chez les bactéries par les QDs

Stress oxidatif et stress lié aux métaux détectés à l'aide de biosenseurs

Biosenseur EROs

23

Dommages photo-induits aux biomolécules

Evaluation de l'intégrité de l'ADN Amplification par qPCR Electrophorèse su

Conclusions

 √ Rôles clés joués par la stabilité vs dissolution et l'activation par la lumière sur la toxicité des nanoparticules de ZnO.

 $\sqrt{}$ La cytotoxicité des QDs ZnO est faible à l'obscurité.

 $\sqrt{\text{Les QDs ZnO génèrent de fortes quantités d'EROs sous irradiation lumineuse.}}$

ANR CESA 2011-2014 : Project « NanoZnOTox »

Christophe Merlin (LCPME, Nancy) Lavinia Balan (IS2M, Mulhouse) Jean-Jacques Gaumet (LSMCL, Metz) Patrick Billard (LIMOS, Nancy)

> Clément Dezanet Abdelhay Aboulaich Hatem Moussa Xavier Bellanger

Merci pour votre attention !